

Magnetische Bauteile und Baugruppen

Grundlagen, Anwendungsbereiche, Hintergründe und Historie

Attempo

induktive Bauteile, Feldbustechnik Testhaus

Steinbruchstr. 15 72108 Rottenburg

Tel.: +49 (0) 7472 9623 90 Fax: +49 (0) 7472 9623 92

eMail: info@attempo.com www.attempo.com

- Induktive Bauteile Berechnung, Simulation und Test
- Kleinserienfertigung
- Filtersysteme
- EMV –Test, Beratung und Seminare
- Entwicklungsunterstützung
- Kommunikationstechnik
- Feldbusanalysen und Komponententest
- Umweltprüfverfahren
- Information

Version 1.1 25.06.2009

attempo Tel: +49 (0) 7472 96 23 90

Kernmaterialien

Zur Verstärkung des magnetischen Feldes wird in den Isolierkörper (Spulenkörper) ein Kern aus magnetisch leitfähigem Material eingebracht.

Dieses magnetisch leitfähige Material kann sein aus:

	Eisen, Nickel, oder Kobalt bzw. Kombinationen									
	Mumetal 76NiFeSi									
	Trafoblech FeSi									
	massiv, oder aus einzelnen Blechen zusammengesetzt									
oder	Ferritkern									
	Mangan/Zink, (gebräuchliche Ferrite)									
	Nickel/Zink, (K10, M13, höhere Frequenzen, EMV)									
	Magnesium/Aluminium und weitere									
	Gesintertes Herstellungsverfahren									
oder	Kompositkerne									
	Bestehend aus Eisenpulver/Permalloy und Ferrit									
oder	Metallpulverkern mit Isolation									
	Reineisenpulver mit Isolation									
	Molybdän-Permalloy-Pulver z.B. 81Ni17Fe2Mo									

Welches Material hat sich wofür bewährt:

Eisen, Nickel, oder Kobalt bzw. Kombinationen NF-Bereich bis 200 kHz.

Transformatoren Motoren Generatoren	hohe Sättigungsmagnetisierung J _S geringe Koerzitivfeldstärke H _C Permeabilität < 6000	Fe + 0,5 – 5 Si Fe + 30 – 35 Co
Bandkerne	VME111 μ = 15 000, μ_i = 3 000, B_S = 1	1,50 T
NF-Übertrager Stromsensoren Drosseln Telekom Audio Audio-Bahn (110V) NF-Filter	Linearität der B/H-Kennlinie Die Arbeitsfrequenz ist von der Blechdicke und Induktion abhängig Hohe Permeabilität bis μ = 150 000 Fe + 76% Ni μ = 150 000, μ_i = 60 000, E Fe + 50% Ni μ = 45 000, μ_i = 5 000, E Fe + 36% Ni μ = 15 000, μ_i = 3 000, E	Mumetall FeNi76 Fe + Ni Fe + Ni + Co $B_{s} = 0,77 T$ $B_{s} = 1,55 T$ $B_{s} = 1,20 T$
Abschirmung NF-Schirm	sehr hohe Anfangspermeabilität µi und Wirbelstromverluste	Mumetall FeNi76 Fe + Co, Fe + Si
Dauermagnete eigentlich Ferrite	B+H möglichst groß Die Magnetisierung erfolgt einmalig bei der Herstellung.	Fe+Co+Ni+Al+Cu BaO 6Fe ₂ O ₃ Sm+Co, NdFeB
Informationsspeicher	rechteckige B/H-Kennlinie	Fe + Ni, Mg-Mn-Ferrite

rmationsspeicner rechteckige B/H-Kennlinie IIIIO

Die Verluste sind hier hauptsächlich auf Hysterese (Wandverschiebungen), Wirbelströme (Leitfähigkeit des Kernmaterials) und Atomverschiebungen verursacht

Granatschichten

Ferrite

Ferrite sind aufgrund ihrer Flexibilität universell einsetzbar. Durch den Effektivitätsvorteil werden konventionelle Netzteile durch Schaltnetzteile ersetzt. Wirkungsgrad von linearen Netzteilen ab 20-40 %. Auch die Gewichtseinsparung ist ein wichtiges Kriterium. Die Permeabilität der Ferrite ist so hoch verfügbar, dass auch hochwertige NF-Trafos anstatt mit Mumetal, mit

Ferriten (z.B.T38) realisiert werden können. Die Anwendungsmöglichkeiten, Formen und Eigenschaften sind sehr umfangreich. Ein weiterer Vorteil ist der relativ hohe ohm'sch Widerstand (< Wirbelstromverluste).

Die Curie-Temperatur muss ab ca. 100°C beachtet werden.

Nickel/Zink, NiZn (rho, $\rho > 10^2 \Omega m$) Fe₂O₃ >50%, NiO > 10%, ZnO >10% Relativ niedrige Wirbelstromverluste, Die Magnetostriktion ist bei Nickel stärker Frequenzbereich bis > 1 GHz

- Leitungsdämpfung und Unterdrückung von HF-Schwingungen/Störungen
- MW/UKW-Filter
- Baluns, Hochfrequenzübertrager
- HF-Enstörbauteile
- Abschirmplatten

Mangan/Zink, MnZn

Frequenzbereich bis ca. 40 MHz Relativ hohe Wirbelstromverluste (spezi. Widerstand ρ < 20 Ω m)

- Breitbandübertrager
- Leistungsübertrager
- Impedanz und Anpassungsübertrager
- Drosseln
- Stromkompensierte Drosseln
- Stromwandler

Die Verluste werden hauptsächlich durch Wirbelströme (Leitfähigkeit des Kernmaterials) und Elektronenplatzwechsel im Kristall verursacht. Auch beim Kernmaterial tritt der Skineffekt auf (Verdrängung an die Oberfläche=>Eisenpulver)

Komposit-Kerne, FPC-Kerne

Diese Kerne bestehen aus 2 Komponenten – Ferrit und Eisenpulver.

Das bietet eine hohe Permeabilität (Induktivität) bei kleiner Aussteuerung und niederer Frequenz durch den Ferritanteil und hohe Feldstärken durch den isolierten Eisenpulveranteil.

Die Alterung ist temperatur- und feldstärkeabhängig !

Eisenpulverkerne

Metallpulver mit isolierendem Bindemittel gepresst, erlaubt hohe Sättigungsmagnetisierung und Feldstärken. Die Wirbelströme (Skineffekt) sind durch die elektrisch, isolierten Pulverteile, wie bei sehr dünnen Blechen gering – geringe Leitfähigkeit.

Die Alterung ist temperatur- und feldstärkeabhängig !

Weitere Ferritmaterialien müssen passend zur Applikation nach technischen Daten ausgewählt werden. Dies sind FeO₃, Al-Mischungen, Granate usw. Auch FPC Verbundwerkstoffe aus Kunststoff und Ferrit sind für unterschiedliche Applikationen verfügbar.

Luftspulen (ohne Kernmaterial)

Bei Luftspulen sind hohe Güten (Q bis 400) erreichbar Keine Sättigung durch Kernmaterialien Der Strom ist durch den Draht begrenzt (Querschnitt, Temperatur, Wirbelströme, Skin-, Proximityeffekt usw.)

Details 100 Percent Initial Permeability (%µ0) 50 50 VS. Ferrit DC Magnetizing Force* rmeability (%μ₀) 10 Ferri ercent Initial Eisenpulver Eisenpulver DC Magnetizing Force (oersteds) DC Current (ampere) 98 50 100 10 20 Number of Turns DC Current (ampere H-DC Magnetizing Force (oersteds) NOTE: 1 Oe=.7958 A/cm

Copyright © attempo

Übersicht über weichmagnetische Werkstoffe

Material	Zusammensetzung	SattInduktion B _S	Koer.Feldstärke H _c	Permeabilität µ _{max}	
		T, Vs/m²	A/m		
reines Eisen	Fe (100 %)	2,15	80	5 000	
Fe-Si	Fe (96 %)	1,95	40	7 000	
nicht kornorientiert	Si (4 %)				
Fe-Si	Fe (97 %)	2,0	8	40 000	
kornorientiert	Si (3%)				
Permalloy 78	Ni (78 %)	1,08	4	100 000	
	Fe (22 %)				
Superpermalloy	Ni (79 %)	0,8	0,16	500 000	
	Fe (16 %)				
	Mo (5 %)				
Mumetal	Ni (77 %)	0,65	4	150 000	
	Fe (16 %)				
	Cu (5 %)				
	Cr (2 %)				
Permendur	Fe (50 %)	2,45	160	5 000	
	Co (50 %)				
Eisenpulver	Fe, Ni, Mo	< 1,5	100 -1000	300	
	Bindemittel				
Ferrit	NiZn	0,15 – 0,3	10 – 2 000	10 – 3 500	
	MnZn	0,20 - 0,5	5 – 100	300 – 18 000	

Warum werden Ferrite verwendet?

Keramisch hergestellte magnetische Werkstoffe finden immer weitere Einsatzgebiete. Ferrite oder Ferrospinelle (alte Bezeichnung) sind universell einsetzbar. Weichmagnetische Ferrite kommen als Kernwerkstoff für Spulen, Übertrager, Sensoren und zahlreichen andere Anwendungen in Frage, die früher hochpermeablen und fein lamellierten Blechen und Pulverkernen vorbehalten waren. Hartmagnetische Verbindungen finden als Dauermagnete Anwendung.

Das Einsatzgebiet weichmagnetischer Werkstoffe reicht von der Nieder- bis zur Hochfrequenztechnik. Die allgemeinen Forderungen sind niedere Verluste und hohe Permeabilität.

Bei metallischen Kernmaterialien treten starke frequenzabhängige Wirbelstromverluste auf. Sie entstehen durch Ströme, die das magnetische Wechselfeld in den leitenden Bereichen des Kerns induziert. Die Grenzfrequenz fa hängt vom spezifischen Widerstand ρ , der Blechdicke d und der Permeabilität μ ab.

Zusammenhang:

f ·	$\rho \cdot 10^8$
1g .–	$\mu \cdot d^2$

- f_{α} = Grenzfrequenz
- ρ = spezifischer Widerstand (rho) Ω cm
- μ = Permeabilität Vs/Am bzw. Ω s/m
- d = Blechdicke in cm

Durch feinere Lamellierung, Verkleinerung von d, kann man zwar die Grenzfrequenz heraufsetzen, aber Bleche, dünner als 0,03 mm kann man nicht mehr wirtschaftlich herstellen. Auch nimmt wegen der notwendigen Isolation zwischen den Lamellen der Füllfaktor und damit die auf den Kern-Gesamtguerschnitt bezogene Permeabilität stark ab.

Das Prinzip der Unterteilung führte folgerichtig zu den Pulver- und Permalloykernen. Bei diesen Kernen wird hauptsächlich Karbonyleisen o.ä. durch Bindemittel zusammengehalten. Es lassen sich kugelige Teilchen von etwa 1 µm Durchmesser herstellen, die gut voneinander isoliert (Luftspalte) werden können. Hierdurch ist aber eine Scherung der Permeabilität und eine Verkleinerung des Füllfaktors verbunden. Daher wirkt sich eine Vergrößerung der Kornpermeabilität erst bei großen Füllfaktoren merklich auf die Permeabilität eines Kerns aus. Da wegen der Isolation die Größe des Füllfaktors begrenzt ist liegt die höchste erreichbare Permeabilität µ bei Pulverkernen in der Größenordnung von ca. 300.

attempo

Ein weiterer Weg zur Erhöhung der Grenzfrequenz wäre eine Vergrößerung des spezifischen Widerstandes ρ . Dieser beträgt bei reinem Eisen etwa 10⁻⁵ Ω cm. Durch Herstellung einer Eisen-Chrom-Aluminium-Legierung konnte man jedoch nur eine Verbesserung um den Faktor 15 erzielen. Bereits 1909 wurde von Hilbert erkannt, dass gewisse Ferrite, also nichtmetallische, oxydische Stoffe, einen hohen spezifischen Widerstand (ρ bis zu 10⁸ Ω cm) besitzen.

Das ist ein Faktor von 10¹³ größer, als bei Eisen. Allerdings dauerte es noch Jahrzehnte, bis für die Industrie wirklich brauchbare Ferrite verfügbar waren. Diese Stoffe sind dann bei hohen Frequenzen verwendbar, vor allen durch wesentlich geringere Wirbelstromverluste (eddy current).

Heute werden hauptsächlich MnZn - und NiZn-Ferrite eingesetzt. Diese Kerne sind von unterschiedlichen Herstellern mit ähnlichen technischen Daten austauschbar verfügbar => second Source.

Allgemeine physikalische Eigenschaften von Ferriten:

•	Gewicht:	2-5g/cm ³					
•	Zugfestigkeit:	15 – 30 N/mm²					
•	Druckfestigkeit:	50- 200 N/mm ²					
•	Vickershärte HV:	500 – 10000 N/m	m²				
•	Elastizitätsmodul E:	10 – 20 • 10 ⁴ N/m	1m²				
•	Bruchzähigkeit K:	0,5 – 1,5 N/m²					
•	Curietemperatur:	100 – 500°C					
•	Spezifische Wärme:	0,5 – 0,9 J/g ∙ K					
•	Wärmeleitfähigkeit	$3 - 8 \bullet 10^{-3} J \bullet s \bullet$	• K				
•	Linearer Ausdehnungskoeffizient:	5 – 10 ∙ 10 ⁻⁶ / K					
•	Spezifischer Widerstand p:	10 ¹ – 10 ⁹ Ωcm	frequenzabhängig				
•	Dielektrische Konstante ε :	10 ¹ - 10 ⁶	frequenzabhängig				
•	Elektrische Durchschlagsfestigkeit	0,1 - 2 kV/mm frequenzabhängi					
-	Deständigkeit gegen Streblen (Comme Neutron	a m)					

• Beständigkeit gegen Strahlen (Gamma, Neutronen)

Elektrische Verluste magnetischer Bauteile

Die Verluste sind abgesehen vom ohmschen Widerstand R_{CuDC} des Drahtes frequenzabhängig.

Die Kupferverluste werden bestimmt durch:

Draht, Temperatur, Wickeltechnik, Spannung, Strom **Kupferverluste:**

Wicklungsverluste (f = 0, ohmscher Widerstand R_{CuDC}) Wirbelstromverluste der Wicklung (Skineffekt, Proximity) R_{Cu(f)}

temperaturabhängige Verluste

Die Kernverluste werden bestimmt durch:

Kernmaterial, Kernform, Luftspalt, Temperatur, Lage der Wicklung

Abstand der Wicklung zum Kern, Feldstärke, Induktion, Signalform, Umgebung(Einbauart)

Kernverluste: R_{K(f)}

Hystereseverluste

Wirbelstromverluste R_w

temperaturabhängige Verluste

Nachwirkungsverluste

Zusätzliche Verluste

Dielektrische Verluste $\mathbf{R}_{(De)}$

Gyromagnetische Verluste

Verluste durch Abschirmung $\mathbf{R}_{(As)}$

Verluste durch Peripherie (R_{Ph})

Dielektrische, Verluste, Verluste durch Wirbelströme in der Abschirmung

Der Verlustfaktor tan δ für Kernmaterialen in Abhängigkeit von der Frequenz fasst diese Verluste zusammen und stellt einen Anhaltspunkt dar. Mit steigender Temperatur nehmen die Verluste, je niederer die Curietemperatur ist, stärker zu. Auch müssen bei nicht perfekter Sinus-Welle, die Oberwellen separat betrachtet werden.

Bei einem Rechtecksignal muss noch die 7 Oberwelle (K7) mit relativ geringen Verlusten übertragen werden.

attempo

Magnetisierungskurven von Industrie-Kernmaterialien (MicroMetals, FerroxCube, Epcos, VAC)

Werkstofftabellen nach EPCOS

Bevorzugte Anwendung			Resonanz-	Leitungs-	Leistungs-Übertrager E			Breitband-Übertrager	
			kreise	dämpfung				T	
Werkstoff			K1	M33	N27	N87	N41	T38	T46
Material			NiZn	MnZn	MnZn	MnZn	MnZn	MnZn	MnZn
	Symbol	Einheit							
Anfangspermeabilität	μ _i		80	750	2 000	2 200	2 800	10 000	15 000
(T = 25°C)			± 25%	± 25%	$\pm 25\%$	± 25%	± 25%	± 30%	\pm 30%
Messfeldstärke Induktion	Н	A/m	5 000	2 000	1 200	1 200	1 200	1 200	1 200
(nahe Sättigung) 10 kHz	B _s 25°C	mT	310	400	500	480	490	380	400
	B _S 100°C	mT	280	310	410	380	390	240	240
Koerzitivfeldstärke	H _C 25°C	A/m	380	80	23	16	22	9	7
(f = 10kHz)	H _C 100°C	A/m	350	65	19	9	20	6	6
Günstiges	1/s	kHz	1 500	200	25	25	25		
Frequenzgebiet			12 000	1 000	150	500	150		
Bezogener bei f _{min}	tan δ/μ _i	10 ⁻⁶	< 40	< 12					
Verlustfaktor bei f _{max}		10 ⁻⁶	< 120	< 20					
Hysteresematerialkonstante	η _B	10 ⁻⁶ /mT	< 36	< 1,8	< 1,5	< 1,4	< 1,4	< 1,4	< 2,0
Curietemperatur	T _c	°C	> 400	> 200	>220	> 220	> 220	> 130	> 130
BezogenerTemperaturbeiwert									
Bei 25 55°C	α_{F}	10 ⁻⁶ /K	28	0,52,6					
Bei 5 25°C		4.0-6.4.4	71						
Mittelwert von α_{F}		10 ⁻ °/K	4	1,6	3	4	4	-0,4	-0,6
Bei 25 55 °C					. = = 0	1	1.000	1 0 0 0	
Dichte (Richtwert)	ρ	Kg/m ³	4650	4 500	4 750	4 800	4 800	4 900	5 000
Desakkomodationfaktor	DF	10 ⁻⁶	20	8					
Bei 25 °C									
Spezifischer	ρ	Ωm	10 ⁵	5	3	8	2	0,1	0,01
Gleichstromwiderstand									

Vergleichsliste Ferritmaterialien

Kernformen

Analogien zwischen ei	ektrischen	ou on kreis, elektrisci	leili i eiu u	and magnetischem i eid						
Stromkreis	Einheit	Elektrisches Feld	Einheit	Magnetisches Feld	Einheit					
Spannung 🔨 🔨	V	Ladung 🔨 🔨	As	Durchflutung	Α					
Strom	Α	Spannung / _Q	V	Magn. Fluss / _O	Vs					
Widerstand R I	Ω; V/A	Kapazität / C U	F; As/V	M. Widerstand $R_m \Phi$	A/Vs; 1/Ωs					
Spannung U	V	Spannung U	V	Durchflutung O	Α					
Strom I	Α	Ladung Q	As	Magn. Fluss Φ	Vs					
Ohm. Widerstand R	Ω; V/A	Kapazität C	F; As/V;	Magn. Widerstand R _m	A/Vs; 1/Ωs					
R=I/A; R=U/I		$C = \epsilon_0 \cdot \epsilon_r \cdot A/d; C = Q / U$	s/Ω	$R_m = I/\mu_0 \cdot \mu_r \cdot A_e$						
				Induktivität L	H; Vs/A; Ωs					
				$L = N^{2}/R_{m} ; L = (N \cdot \Phi) / I$						
Stromdichte S	A/m ²	Verschiebungsdichte D	As/m²	Magn. Induktion B	Vs/m², T, G					
Ohm. Leitwert G	S; A/V; 1/Ω	_		Magn. Leitwert Λ	Vs/A; Ωs					
		Feldstärke E	V/m	Feldstärke H	A/m; Oe					
		E = U / d		$H = N \cdot I / I; \Phi / I$						
		Fussdichte D	C/m²;	Magn. Induktion B	Vs/m², T; G					
		$D = \varepsilon_0 \cdot \varepsilon_r \cdot E = Q/A$	As/m²	$\mathbf{B} = \boldsymbol{\mu}_0 \cdot \boldsymbol{\mu}_r \cdot \mathbf{H} = \boldsymbol{\Phi}/\mathbf{A}$						
Spezifischer Widerstand	Ωm	Elektr. Feldkonstante ε ₀	As/Vm	Magn. Feldkonstante µ₀	Vs/Am, 4⋅π nH/cm					
ρ		Relativitätszahl ε _r		Relative Permeabilität µr						
		Zeitkonstante τ=R C τ	S	Zeitkonstante $\tau = L/R \tau$	S					
		Plattenkondensator C	F; As/V	Ringspule	H; Vs/A					
		$\mathbf{C} = (\mathbf{\varepsilon}_0 \cdot \mathbf{\varepsilon}_r \cdot \mathbf{A}) / \mathbf{d}$		$\mathbf{L} = (\mathbf{N}^2 \cdot \boldsymbol{\mu}_0 \cdot \boldsymbol{\mu}_r \cdot \mathbf{A}_e) / \mathbf{l} \qquad \mathbf{L}$						
Teilspannungen im Kreis	V; Ω; Α	, , , , , , , , , , , , , , , , , , ,		Teildurchflutungen im						
Ú = R x Í				Kreis $\Theta = R_m \cdot \Phi$	A; Ωs;					
Energie	J; Ws	Feldenergie W	J; Ws	Feldenergie W	J; Ws					
I² · R · t; U · I · t		$W = \frac{1}{2} C \cdot U^2 = \frac{1}{2} Q \cdot U$		$W = \frac{1}{2} L \cdot I^2 = \frac{1}{2} \Phi \cdot I_{\text{max}}$						
		$W = \frac{1}{2} E^2 \cdot \varepsilon_0 \cdot \varepsilon_r \cdot A \cdot d$		$W = \frac{1}{2} H^2 \cdot U_0 \cdot U_r \cdot A \cdot I$						

Analogien zwischen elektrischem Stromkreis, elektrischem Feld und magnetischem Feld

Weitere Vergleiche sind möglich!

Vergleich elektrischer Schwingkreis mit mechanischem Pendel

Dieser Vergleich zeigt, dass die magnetische Größen mit den entsprechenden elektrischen Größen durch den Austausch von zumeist V und A übereinstimmen. Das ist der enge Zusammenhang. Ähnliche Zusammenhänge finden wir aber auch bei anderen Gebieten wie Kinematik, Dynamik, Thermodynamik, Gravitation und Atomphysik.

Kondensatorspannung (bzw. elektrischer Feldstärke), Spulenspannung und mechanische Schwingung und Stromstärke (bzw. magnetischer Flussdichte) bei der elektrischen Schwingung:

Die gleichen Graphen gelten im mechanischen Fall für Elongation, Geschwindigkeit und Beschleunigung (bzw. Kraft).

Kernverluste unterschiedlicher Ferritmaterialien bei 100 °C

Applikationen für Schaltregler ab 100 kHz

Frequenz	Material	f _o	μ _e , μ _i	B _{sat}	Tc	Kernverluste in mW/cm ³ , Bs in mT								
		kHz	25°C	mT bei 1200 A/m	°C	200	100	80	60	40	20	10	5	
100 kHZ	Ferroxcube 3C90	< 200	2300	≈470	≥ 220									
	Ferroxcube 3C30	< 200	2100	≈500	≥ 240									
	Ferroxcube 3C92	< 200	1500	≈520	≥ 280									
	Ferroxcube 3C91	< 300	3000	≈470	≥ 220									
	Ferroxcube 3C93	< 300	1800	≈500	≥ 240									
	Ferroxcube 3C94	< 300	2300	≈470	≥ 220									
	Ferroxcube 3C34	< 300	2100	≈500	≥ 240									
	Ferroxcube 3C96	< 400	2000	≈500	≥ 240	370	45	22						
	Ferroxcube 3F3	< 700	2000	≈440	≥ 200	500	72	40	20					
	Ferroxcube 3F35	< 1000	1400	≈500	≥ 240									
	Ferroxcube 3F4	< 2000	900	≈410	≥ 220		200	100	40					
	Ferroxcube 3F45	< 2000	900	≈420	≥ 300									
	Ferroxcube 3F5	< 4000	650	≈380	≥ 300									
	Ferroxcube 4F1	<10000	80	≈320	≥ 260									
	EPCOS N67	< 200	2100											
	EPCOS N87	< 300	2200			370	50		10		1			
	EPCOS N92					400	55		9					
	EPCOS N97					300	41		8					
	EPCOS N49					720	82		15		1			
	Magnetics K					700	95	42	20	5				
	Magnetics F					700	110	65	30	9				
	TDK PC40					400	70	42	20					

Magnetische Bauteile von G.Schindler

Frequenz	Material	f o	μ_{e}, μ_{i}	B _{sat}	Tc	Kernverluste in mW/cm³, Bs in mT								
		kHz	25°C	mT bei 1200 A/m	°C	200	100	80	60	40	20			
200 kHZ	Ferroxcube 3C90	< 200	2300	≈470	≥ 220									
	Ferroxcube 3C30	< 200	2100	≈500	≥ 240									
	Ferroxcube 3C92	< 200	1500	≈520	≥ 280									
	Ferroxcube 3C91	< 300	3000	≈470	≥ 220									
	Ferroxcube 3C93	< 300	1800	≈500	≥ 240									
	Ferroxcube 3C94	< 300	2300	≈470	≥ 220									
	Ferroxcube 3C34	< 300	2100	≈500	≥ 240									
	Ferroxcube 3C96	< 400	2000	≈500	≥ 240		170	95	42					
	Ferroxcube 3F3	< 700	2000	≈440	≥ 200		210	120	60	22				
	Ferroxcube 3F35	< 1000	1400	≈500	≥ 240									
	Ferroxcube 3F4	< 2000	900	≈410	≥ 220		430	230	100	30				
	Ferroxcube 3F45	< 2000	900	≈420	≥ 300									
	Ferroxcube 3F5	< 4000	650	≈380	≥ 300									
	Ferroxcube 4F1	<10000	80	≈320	≥ 260									
	EPCOS N67	< 200	2100											
	EPCOS N87	< 300	2200			1200	180		35		4			
	EPCOS N92					1100	200		35		3			
	EPCOS N97					900	140		40		4			
	EPCOS N49					2000	200		30		3			
	Magnetics K													
	Magnetics F					2000	380	200	95	30				
	TDK PC40					1100	200	100	40					
	TDK PC50					3000	340	160	80	22				

Copyright ©

Magnetische Bauteile von G.Schindler

Frequenz	Material	f o	μ _e , μ _i	B _{sat}	T _c	Kernverluste in mW/cm³, Bs in mT								
		kHz	25°C	mT bei 1200 A/m	°C	200	100	80	60	40	20	10	8	6
500 kHz	Ferroxcube 3C96	< 400	2000	≈500	≥ 240		1400	800	380	135				
	Ferroxcube 3F3	< 700	2000	≈440	≥ 200		800	480	220	90	18			400 kHz
	Ferroxcube 3F35	< 1000	1400	≈500	≥ 240									
	Ferroxcube 3F4	< 2000	900	≈410	≥ 220		1000	520	250	70				
	Ferroxcube 3F45	< 2000	900	≈420	≥ 300		900	450	200	62				
	Ferroxcube 3F5	< 4000	650	≈380	≥ 300									
	Ferroxcube 4F1	<10000	80	≈320	≥ 260									
	EPCOS N87	< 300	2200				1100		280		35			
	EPCOS N92						1100		300		35	10		
	EPCOS N97						950		300		35	8		
	EPCOS N49						740		100		12	2		
	Magnetics K						900	410	180	42	5			
	Magnetics F						1500	900	500	180	35	8		
	TDK PC40						1100	670	320					
	TDK PC50						1500	620	230	55	5			
700 kHz	Ferroxcube 3F35	< 1000	1400	≈500	≥ 240									
	Ferroxcube 3F4	< 2000	900	≈410	\geq 220		2000	1000	350	53				
	Ferroxcube 3F45	< 2000	900	≈420	≥ 300		1050	500	180	30				
	Ferroxcube 3F5	< 4000	650	≈380	\geq 300		1050	500	180	28				
	Ferroxcube 4F1	<10000	80	≈320	≥ 260									
	EPCOS N92						5500		1500		200	50		
	EPCOS N97								1000		200	45		
	EPCOS N49						2500		500		60	14		
	Magnetics K							2050	950	250	30			
	Magnetics F								1850	750	180	40	22	12

Magnetische Bauteile von G.Schindler

Frequenz	Material	f o	μ _e , μ _i	B _{sat}	T _c	Kernverluste in mW/cm³, Bs in mT								
		kHz	25°C	mT bei 1200 A/m	°C	200	100	80	60	40	20			
	TDK PC50						7500	3500	1800	500	60	8		
1 MHz	Ferroxcube 3F4	< 2000	900	≈410	≥ 220					2000	400	85	52	27
	Ferroxcube 3F45	< 2000	900	≈420	\geq 300					1100	250	55	32	18
	Ferroxcube 3F5	< 4000	650	≈380	\geq 300					710	150	32	20	
	Ferroxcube 4F1	<10000	80	≈320	≥ 260					4200	500	70	30	12
	Magnetics K													
3 MHz	Ferroxcube 3F4	< 2000	900	≈410	\geq 220						1200	290	180	100
	Ferroxcube 3F45	< 2000	900	≈420	\geq 300									
	Ferroxcube 3F5	< 4000	650	≈380	\geq 300					1750	400	100	60	35
	Ferroxcube 4F1	<10000	80	≈320	≥ 260						650	150	100	55
	Magnetics K										3200	450	210	90
5 MHz	Ferroxcube 4F1	<10000	80	≈320	\geq 260						1200	300	180	100
10 MHz	Ferroxcube 4F1	<10000	80	≈320	≥ 260									
												850	450	220

Liste wir erweitert

Abkürzungen

A A		magnetische Fläche bzw. Spulenquerschnitt	$[mm^2; cm^2, m^2, inch^2]$
Λe Δ.		Induktivitätsfaktor AI = $1/N^2$	$[nH Vs/A \times 10^{-9}]$
A_{L1}		Mindestinduktivitätswert bei vorgegebener Aussteuerung B = Applikationsabhängig, aber Standard ist Sinus	[nH, Vs/A x 10 ⁻⁹]
A _{min}		Minimaler Kernquerschnitt	[mm ² ; cm ² , m ² , inch ²]
A _N		Wickelquerschnitt	[mm ² ; cm ² , m ² , inch ²]
A _R		Widerstandsfaktor, AR = Rcu/N ²	[μΩ, 10 ⁻⁶ Ω]
а		Dämpfung	[Verhältnis; dB]
а		Beschleunigung	[m/ s²]
α		Temperaturbeiwert TK	[1/K]
α_{F}		bezogener Temperaturbeiwert des Werkstoffs	[1/K]
α_{E}		Temperaturbeiwert der effektiven Permeabilität	[1/K]
В		Stromverstärkung	[Verhältnis; dB]
В		Bandbreite	[Hz]
В		magnetische Flussdichte / magnetische Induktion	[T, Vs/m²; Vs/cm²]
		1 T (Tesla) = 1 Vs/m² = 10 ⁻⁴ Vs/cm² = 10 ⁴ G 1 G (Gauss) = 100 μT = 10 ⁻⁸ Vs/cm²	[T (Tesla), mT, Vs/m², G(Gauss)
ΔB	delta	Hub der Flussdichte	[T (Tesla), mT, Vs/m², G(Gauss)
B^		Scheitelwert der magn. Flussdichte, Induktion	[T (Tesla), mT, Vs/m², G(Gauss)
ΔB^{*}		Scheitelwert der Hubs der Flussdichte, Induktion	[T (Tesla), mT, Vs/m², G(Gauss)
В		Gleichfeldflussdichte, Gleichstrommagnetisierung	[T (Tesla), mT, Vs/m², G(Gauss)
B _R		Remanente Flussdichte, Induktion	[T (Tesla), mT, Vs/m², G(Gauss)
Bs		Sättigungsmagnetisierung, Sättigungsinduktion	[T (Tesla), mT, Vs/m², G(Gauss)
B		Blindleitwert	[S; A/V; 1/Ω]

B _C	kapazitiver Blindleitwert	[S; A/V; 1/Ω]
BL	induktiver Blindleitwert	[S, A/V; 1/Ω]
C ₀	Wicklungskapazität	[F, As/V]
C ₀	Lichtgeschwindigkeit im Vakuum c ₀ = 2,99792458 * 10 ⁸ [m/s]	[m/s]
CDF	Klirrfaktor	
D	elektrische Flussdichte, Verschiebungsdichte	[C/m² (Coulomb)]
DF	Desakkommodationsbeiwert DF=d/µi	
е	Elektrische Elementarladung; e = 1,6021892 * 10 ⁻¹⁹	[As]
E	Elektrische Feldstärke	[V/m]
Ea	Aktivierungsenergie	J, Ws, VAs]
ET	Feldstärke in Oe, Angabe in amerikanischen Unterlagen	[Oe, 79,58 Å/m]
ET100	Feldstärke in Oe bei einer Induktion von 100 Gauss bzw. 10m	nT [Oe, 79,58 A/m]
ε ₀	absolute Dielektrizitätszahl im Vakuum 8,85418782 * 10 ⁻¹² F/m	[F/m; As/Vm]
- ē ē' ē"	komplexe Dielektrizitätskonstante, Real- und Imaginärteil	
Er	relative Dielektrizitätskonstante	
Ē	Kraft zwischen zwei parallelen Leitern	[N; kg*m/s²]
É	Kraft auf einen Leiter im homogenen Magnetfeld	[N; kg*m/s²]
F	Faraday-Konstante, $F = 9,648456 * 10^4$	[C/mol]
F _{Cu}	Kupferfüllfaktor	
f	Frequenz	[Hz, 1/s]
f ₀ , f _R	Resonanzfrequenz	[Hz, 1/s]
f grenz	Grenzfrequenz	
f _{max} , f _{gro,} f _{go,} f _o	obere Grenzfrequenz	[Hz, 1/s]
f _{min} , f _{gru,} f _{gu,} f _u	untere Grenzfrequenz	[Hz, 1/s]
G Gauss	Magnetische Flussdichte, Induktion 1 Gauss = 10^{-4} T = 10^{-4} ·Vs/m ²	[Gauss, 10 ⁻⁴ ⋅Vs/m², T⋅10 ⁻⁴
G	Ohm'scher Leitwert, elektrischer Leitwert, Wirkleitwert	[S; A/V; 1/Ω]

g		Luftspalt	[mm, inch]
η	eta	Wirkungsgrad eines Trafos	
η_{B}	eta	Hysteresematerialkonstante	[1/mT, 1/10G]
η_i	eta	Hysterekernkonstante	[A ⁻¹ H ^{-½}]
Ĥ		magnetische Feldstärke	[A/m, A/cm, Oe]
		1 A/m = 10^2 A/cm, 1 Oe = $(1/0, 4 \cdot \pi) \cdot 10^2$ = 79,554 A/m	
		1 A/m = $0.4 \cdot \pi \cdot 10^{-2} = 0.01257$ Oe	
H^		Scheitelwert der magn. Feldstärke	[A/m, A/cm, Oe]
Н_		Gleichfeldstärke Gleichstrommagnetisierung	[A/m, A/cm, Oe]
H _C		Koerzitivfeldstärke	[A/m, A/cm, Oe]
h		Hysteresebeiwert des Materials	[10 ⁻⁶ cm/A]
h/µi²		bezogener Hysteresebeiwert	[10 ⁻⁶ cm/A]
Θ	theta	Durchflutung	[A]
I		Stromstärke	[A]
I_		Gleichstromanteil	[A]
 ^		Scheitelwert des Stromes	[A]
J		Polarisation	[Vs/m² , T (Tesla)]
J, S		elektrische Stromdichte	[A/m², A/mm² ⋅10 ⁻⁶]
K	Kelvin	thermodynamische Temperatur	[K]
		Absoluter Nullpunkt 0 K = -273,16 °C	
k		Bolzmannkonstante, k = 1,380662 * 10^{-23}	[J/K; Ws/K]
k		Gesamtklirrfaktor	
k ₁		Grundschwingung, Grundwelle	
k ₂ ; k ₃	. K _n	Teilklirrfaktoren, x. Harmonische	
		k bzw. k_1 = Grundwelle, k_2 , k_3 = Oberwellen	
L		Induktivitat (frequenzabnangig)	$[H, VS/A, \Omega S, VVD/A]$
∆L/L		relative Anderung der Induktivität	
L ₀		Induktivität der Spule ohne Kern	$[H, VS/A, \Omega S]$
LH		Hauptinduktivität	[Η, VS/A, ΩS]

L _p		Primärinduktivität, Hauptinduktivität	[H, Vs/A, Ωs]
Lp		Parallelinduktivität	[H, Vs/A, Ωs]
L _{rev}		reversible Induktivität	[H, Vs/A, Ωs]
Ls		Streuinduktivität	[H, Vs/A, Ωs]
Ls		Serieninduktivität	[Η , Vs/A, Ωs]
l _e		effektive magn. Weglänge, wirksame Feldlinienlänge	[m, cm, mm, inch]
I _N		mittlere Windungslänge	[m, cm, mm, inch]
Lw/D0	C	Induktivität mit Gleichstrombelastung	[H, Vs/A, Ωs]
Lw/oE	C	Induktivität ohne Gleichstrombelastung	[H, Vs/A, Ωs]
Λ	lamda	magnetischer Leitwert	[1/H, A/V, 1/Ωs]
λ, λο	lamda	Wellenlänge, Vakuumwellenlänge	[m]
		Bezogen auf Lichtgeschwindigkeit c/f	
λ_{S}	lamda	Magnetostriktion bei Sättigungsmagnetisierung	
μ	my	relative komplexe Permeabilität	
μ ₀	my	Magnetische Feldkonstante, Induktionskonstante	[Vs/Am; T⋅m/A; Vs/Am]
	2	$\mu_0 = 4 \cdot \pi \cdot 10^{-7} = 1,25663706 \cdot 10^{-6}$	[Vs/Acm·10 ² , H/m]
µ _{app}		relative wirksame Permeabilität	
μ _a		relative Anfangspermeabilität	
μ _i		relative Anfangspermeabilität	
μ _e		relative effektive Permeabilität	
μ' _p		relativer Real-(Induktivitäts-)Anteil von μ	
μ" _p		relativer Imaginär-(Verlust-)Anteil von μ	
μ		relative Permeabilität – Faktor	
μ_{rev}		relative reversible Permeabilität	
µ's		relativer Real-(Induktivitäts-)Anteil von µ	
μ"s		relativer Imaginär-(Verlust-)Anteil von $\overline{\mu}$	
μ _p , μ _n		Beweglichkeit von Ladungsträgern	[cm²/Vs]

μ_{tot}		relative totale Permeabilität	
• • • •		abgeleitet aus der statischen B/H.Magnetisierungskurve	
Ν		Windungszahl	
η	eta	Wirkungsgrad $\eta = P_a / P_i$	
η_{B}	eta	Hysteresematerialkonstante	[10 ⁻⁶ /mT]
Ρ		Leistung	[W, VA, J/s, Nm/s]
P_{Cu}		Kupferverlustleistung	[W, VA, J/s, Nm/s]
P _{trans}		übertragbare Leistung	[W, VA, J/s, Nm/s]
PF		Leistungsfaktor	
P_{V}		Kernverlustleistung	[W/g, mW/g]
р		spezifischer Gleichstromwiderstand	
Oe	Oersted	Feldstarke in Oersted	[Oe, A/m]
•		1 Oe = $79,58 \text{ A/m} = (1/0,4 \cdot \pi) \cdot 10^2$	
Q		Gute, Gutefaktor (Q = $\omega L/R_s = 1/tan\delta_L$	
Q		Ladung im elektrischen Feld	
Q		vvarmemenge	[J, NM, VVS]
Φ	pni	magnetischer Fluss	[VS, VV(VVeber]]
σ	sigma	Dichte, Richtwerte zumeist für Kernmaterial	[g/cm ³ ; kg/m ³]
R		Widerstand	[Ω, V/A]
R_{Cu}		Kupterwiderstand (DC; f = 0)	[Ω]
_		$R_{Cu} mm^2/m = 0.01724 \Omega \text{ bei } 20^{\circ}\text{C}$	
R _h		Hystererese-Verlustwiderstand eines Kerns	[Ω]
ΔR_h		Anderung von R _h Hysrerese-Verlustwiderstand eines Kerns	[Ω]
Ri		Innenwiderstand	[Ω]
R_{P}		Parallel-Verlustwiderstand eines Kerns	[Ω]
R_P		Parallelwiderstand allgemein	[Ω]
Rs		Serien-Verlustwiderstand eines Kerns	[Ω]
Rs		Serienwiderstand allgemein	[Ω]
		(Stromquelle, Spannungsquelle, Generator)	

R _{th}		thermischer Widerstand	[K/W, K/VA]
Rv S		effektiver verlustwiderstand einer Spule Stromdichte	[Ω] [A/m²]
-			
S		Luftspalt	[mm]
ΣI/A		magnetischer Formfaktor	[1/mm]
Т	Tesla	Magnetische Flussdichte, Induktion 1 T = 10^4 Gauss 1 Gauss = 10^{-4} ·Vs/m ² = 10^{-4} T	[T, Vs/m², Gauss ·10⁴]
ΛT		Temperaturdifferenz °C ist proportional zu °K	[K]
To		Curietemperatur	
t		Zeit	[s]
t _v		Tastverhältnis	L - J
tan δ	delta	Verlustfaktor	
tan δ_{e}		bezogener Verlustfaktor	
tan δ_h		Hysterese-Verlustfaktor	
tan δ_L		Verlustfaktor der Spule	
tan δ_r		(Rest-)Verlustfaktor bei H -> 0	
tan δ/μ _i		bezogener Verlustfaktor des Materials bei H -> 0	
τ.		Zeitkonstante	[s]
τ _{Cu}		Gleichstrom Zeitkonstante τ_{Cu} = L/R _{cu} = A _L /A _R	[s]
U		Effektivwert der elektrischen Spannung	[V, RI, W/A]
U^		Scheitelwert der Spannung	[V]
V		Geschwindigkeit	[m/s, km/h]
		1 m/s = 3,6 km/h, 100 km/h ≈ 28 m/s	
Ve		effektives magnetisches Volumen	[mm³, cm³, m³]
W		Energie, Arbeit	[J, Nm, Ws]
Х		Blindwiderstand	[Ω]
Z		komplexer Scheinwiderstand, komplexe Impedanz	[Ω]
Z		Betrag des Scheinwiderstandes	[Ω]
Copyright	© attempo		Ver. 1.0 vom 11.08.10

Z ₀		Innenwiderstand einer Messspannungsquelle	[Ω]
ZE		Abschlusswiderstand Messempfängers	[Ω]
Zn		spezifischer Widerstand $ Z _n = Z /N^2 \times \epsilon(I_e/A_e)$	[Ω/mm]
ω	omega	Kreisfrequenz; 2 x π x f	[S ⁻¹]